

 https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

1 Digital Logic BSc.CSIT

Unit-4

Combinational Logic

For more notes visit:

https://collegenote.pythonanywhere.com/

https://collegenote.pythonanywhere.com/

 https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

2 Digital Logic BSc.CSIT

Unit-4

Combinational Logic

Combinational circuit is a circuit which consist of logic gates whose outputs at any instant of

time are determined directly from the present combination of inputs without regard to

previous input. The combinational circuit do not use any memory.

- There will be 2𝑛 combination of input variable for 𝑛 inputs.

- A combinational circuit can have 𝑛 number of inputs and 𝑚 number of outputs.

- For e.g. adders, subtractors, decoders, encoders etc.

Fig: Block diagram of combinational circuit

Combinational logic circuit design procedure:

1. The problem is stated.

2. The number of available input variables and required output variables is determined.

3. The input and output variables are assigned letter symbols.

4. The truth table that defines the required relationships between inputs and outputs is

derived.

5. The simplified Boolean function for each output is obtained.

6. The logic diagram is drawn.

Adders

Adders are the combinational circuits which is used to add two or more than two bits at a

time.

Types of adders:

- Half Adder

- Full Adder

1. Half Adder:

A combinational circuit that performs the addition of bits is called half adder. This circuit

needs two binary inputs and two binary outputs. The input variables designate the

augend(𝐴) and addend(𝐵) bits; the output variables produce the sum(𝑆) and carry(𝐶).

Fig: Block diagram

 https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

3 Digital Logic BSc.CSIT

Truth table to identify the function of half adder:

K-map:

From k-map the logical expression for sum and carry is:

𝐶 = 𝐴𝐵

𝑆 = 𝐴̅𝐵 + 𝐴𝐵̅ = 𝐴⨁𝐵

Logic diagram:

Q. Design a half adder using only NAND gates.

Soln:

Input variables: A & B, Output variables: sum(𝑆) and carry(𝐶)

𝑆 = 𝐴̅𝐵 + 𝐴𝐵̅

𝐶 = 𝐴𝐵

Logic diagram of half adder using NAND gates only:

 https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

4 Digital Logic BSc.CSIT

Q. Design a half adder logic circuit using NOR gates only.

Soln:

Input variables: A & B, Output variables: sum(𝑆) and carry(𝐶)

𝑆 = 𝐴̅𝐵 + 𝐴𝐵̅

𝐶 = 𝐴𝐵

Logic diagram of half adder using NOR gates only:

2. Full Adder:

A combinational circuit that performs the addition of three bits at a time is called full

adder. It consists of three inputs and two outputs, two inputs are the bits to be added, the

third input represents the carry from the previous position.

Fig: Block diagram

Truth table for full adder:

- The sum(S) output is equal to 1 when

only one input is equal to 1 or when all

three inputs are equal to 1.

- The carry output (𝐶𝑜𝑢𝑡) has a carry 1 if

two or three inputs are equal to 1.

 https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

5 Digital Logic BSc.CSIT

Simplified expression using k-map in SOP can be obtained as;

𝑆𝑢𝑚(𝑆) = 𝐴̅𝐵̅𝐶𝑖𝑛 + 𝐴̅𝐵𝐶𝑖̅𝑛 + 𝐴𝐵̅𝐶𝑖̅𝑛 + 𝐴𝐵𝐶𝑖𝑛

𝐶𝑜𝑢𝑡 = 𝐴𝐵 + 𝐴𝐶𝑖𝑛 + 𝐵𝐶𝑖𝑛

Logic Diagram:

For carry For sum

Fig: SOP implementation of full-adder

Note: It can also be implemented in POS form. (Try yourself)

Implementation of a full-adder with two half-adders and an OR gate:

Logic expression for sum:

(𝐴⨁𝐵)⨁𝐶𝑖𝑛 = (𝐴̅𝐵 + 𝐴𝐵̅)⨁𝐶𝑖𝑛 = (𝐴̅𝐵 + 𝐴𝐵̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅)𝐶𝑖𝑛 + (𝐴̅𝐵 + 𝐴𝐵̅)𝐶𝑖̅𝑛

 = (𝐴 + 𝐵̅)(𝐴̅ + 𝐵)𝐶𝑖𝑛 + 𝐴̅𝐵𝐶𝑖̅𝑛 + 𝐴𝐵̅𝐶𝑖̅𝑛

 = 𝐴̅𝐵̅𝐶𝑖𝑛 + 𝐴𝐵𝐶𝑖𝑛 + 𝐴̅𝐵𝐶𝑖̅𝑛 + 𝐴𝐵̅𝐶𝑖̅𝑛

Logic expression for carry:

(𝐴⨁𝐵)𝐶𝑖𝑛 + 𝐴𝐵 = (𝐴̅𝐵 + 𝐴𝐵̅)𝐶𝑖𝑛 + 𝐴𝐵 = 𝐴̅𝐵𝐶𝑖𝑛 + 𝐴𝐵̅𝐶𝑖𝑛 + 𝐴𝐵

 https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

6 Digital Logic BSc.CSIT

Simplification of carry:

∴ 𝐶𝑜𝑢𝑡 = 𝐴𝐵 + 𝐴𝐶𝑖𝑛 + 𝐵𝐶𝑖𝑛

Subtractors

Subtractor is a combinational logic circuit which is used to subtract two or more than two bits

at a time, and provides difference and borrow as an output.

Types of Subtractors:

- Half subtractor

- Full subtractor

1. Half Subtractor:

A half-subtractor is a combinational logic circuit that subtract two bits at a time and

produces their difference.

It has two inputs minuend (A) & subtrahend (B) and two outputs difference and borrow.

The difference is a result of subtraction and borrow is used to indicate borrow from next

most significant bit. The borrow bit is present only when 𝐴 < 𝐵.

Truth table:

K-map:

 https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

7 Digital Logic BSc.CSIT

Logic Diagram:

Fig: Implementation of half-subtractor

2. Full Subtractor:

A combinational logic circuit used to subtract three binary digits at a time is called full

subtractor.

This circuit has three input and two outputs. The three inputs are 𝐴, 𝐵 𝑎𝑛𝑑 𝐵𝑖𝑛, denote the

minuend, subtrahend and previous borrow respectively. The two outputs, 𝐷 𝑎𝑛𝑑 𝐵𝑜𝑢𝑡

represent the difference and output borrow, respectively.

Truth table for full subtractor:

Simplified expression of D and Bout using k-map in SOP can be obtained as;

 https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

8 Digital Logic BSc.CSIT

Logic circuit for full subtractor:

For D For Bout

Fig: SOP implementation of full-subtractor

Note: It can also be implemented in POS form. (Try yourself)

Implementation of full subtractor using two half subtractor and one OR gate:

𝐷 = (𝐴⨁𝐵)⨁𝐵𝑖𝑛 = (𝐴̅𝐵 + 𝐴𝐵̅)⨁𝐵𝑖𝑛 = (𝐴̅𝐵 + 𝐴𝐵̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅)𝐵𝑖𝑛 + (𝐴̅𝐵 + 𝐴𝐵̅)𝐵̅𝑖𝑛

 = {(𝐴 + 𝐵̅)(𝐴̅ + 𝐵)}𝐵𝑖𝑛 + 𝐴̅𝐵𝐵̅𝑖𝑛 + 𝐴𝐵̅𝐵̅𝑖𝑛

 = 𝐴̅𝐵̅𝐵𝑖𝑛 + 𝐴𝐵𝐵𝑖𝑛 + 𝐴̅𝐵𝐵̅𝑖𝑛 + 𝐴𝐵̅𝐵̅𝑖𝑛

𝐵𝑜𝑢𝑡 = (𝐴⨁𝐵̅̅ ̅̅ ̅̅ ̅)𝐵𝑖𝑛 + 𝐴̅𝐵 = (𝐴̅𝐵 + 𝐴𝐵̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅)𝐵𝑖𝑛 + 𝐴̅𝐵 = {(𝐴 + 𝐵̅)(𝐴̅ + 𝐵)}𝐵𝑖𝑛 + 𝐴̅𝐵

 = 𝐴̅𝐵̅𝐵𝑖𝑛 + 𝐴𝐵𝐵𝑖𝑛 + 𝐴̅𝐵

Using k-map:

∴ 𝐵𝑜𝑢𝑡 = 𝐴̅𝐵𝑖𝑛 + 𝐴̅𝐵 + 𝐵𝐵𝑖𝑛

 https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

9 Digital Logic BSc.CSIT

Code Conversion

- The availability of large variety of codes for the same discrete elements of information

results in the use of different codes by the different system.

- A conversion circuit must be inserted between the two systems if each use different codes

for same information.

- Thus a code converter is a circuit that makes the two systems compatible even though

each uses a different binary information.

BCD to excess-3 Code Conversion:

BCD Excess-3 circuit will convert numbers from their binary representation to their excess-3

representation. Since each code uses four bits to represent a decimal digit, there must be four

input variables and four outputs variables. Let the input four binary variables are 𝐴, 𝐵, 𝐶 & 𝐷

and the four output variables are 𝑊, 𝑋, 𝑌 & 𝑍.

Truth table:

K-maps for BCD to excess-3 code converter:

Note: Four binary variables may

have 16 bit combinations, and

only 10 of which are listed in

truth table i.e. from 0 to 9. The

rest six bit combinations not

listed for input variables are

don’t care combinations.

 https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

10 Digital Logic BSc.CSIT

The Boolean functions for the outputs lines of the circuit are derived from k-maps

which are:

𝑊 = 𝐴 + 𝐵𝐶 + 𝐵𝐷 = 𝐴 + 𝐵(𝐶 + 𝐷)

𝑋 = 𝐵′𝐶 + 𝐵′𝐷 + 𝐵𝐶′𝐷′ = 𝐵′(𝐶 + 𝐷) + 𝐵(𝐶 + 𝐷)′

𝑌 = 𝐶𝐷 + 𝐶′𝐷′ = 𝐶𝐷 + (𝐶 + 𝐷)′

𝑍 = 𝐷′

Logic diagram for BCD to excess-3 converter:

Analysis Procedure

To obtain the Boolean expressions and truth tables from the combinational logic circuit, we

need to analyse the circuit. First ensure that the circuit is combinational - that is there is no

feedback of an output to an input that the output depends on.

1st step: make sure that circuit is combinational.

2nd step: obtain the output Boolean functions or the truth table.

 Obtaining Boolean functions from logic diagram:

Steps:

1. Label all gate outputs that are a function only of input variables or their complements

with arbitrary symbols. Determine the Boolean functions for each gate output.

2. Label the gates that are a function of input variables and previously labeled gates with

other arbitrary symbols. Find the Boolean functions for the outputs of these gates.

3. Repeat the process outlined in step 2 until the outputs of the circuit are obtained.

4. By repeated substitution of previously defined functions, obtain the output Boolean

functions in terms of input variables only.

A straight-forward procedure:

 https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

11 Digital Logic BSc.CSIT

Step 1: Step 2 & 3:

 𝐹2 = 𝐴𝐵 + 𝐴𝐶 + 𝐵𝐶 𝑇3 = 𝐹2
′𝑇1

 𝑇1 = 𝐴 + 𝐵 + 𝐶 𝐹1 = 𝑇3 + 𝑇2

 𝑇2 = 𝐴𝐵𝐶

Step 4:

 𝐹1 = 𝑇3 + 𝑇1 = 𝐹2
′𝑇1 + 𝐴𝐵𝐶 = (𝐴𝐵 + 𝐴𝐶 + 𝐵𝐶)′(𝐴 + 𝐵 + 𝐶) + 𝐴𝐵𝐶

 = (𝐴′ + 𝐵′)(𝐴′ + 𝐶′)(𝐵′ + 𝐶′)(𝐴 + 𝐵 + 𝐶) + 𝐴𝐵𝐶

 = (𝐴′ + 𝐵′𝐶′)(𝐴𝐵′ + 𝐴𝐶′ + 𝐵𝐶′ + 𝐵′𝐶) + 𝐴𝐵𝐶

 = 𝐴′𝐵𝐶′ + 𝐴′𝐵′𝐶 + 𝐴𝐵′𝐶′ + 𝐴𝐵𝐶

 Obtaining truth table from logic diagram:

Steps:

1. Determine the number of input variables in the circuit. For 𝑛 inputs, list the binary

numbers from 0 to 2𝑛 − 1 in a table.

2. Label the output of selected gates.

3. Obtain the truth table for the output of those gates that are a function of the input

variables only.

4. Obtain the truth table for those gates that are a function of previously defined

variables at step 3, until all outputs are determined.

Truth table for the above logic diagram:

 https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

12 Digital Logic BSc.CSIT

Multi-level NAND Circuit

To implement a Boolean function with NAND gates we need to obtain the simplified

Boolean function in terms of Boolean operators and then convert the function to NAND

logic. The conversion of an algebraic expression from AND, OR, and complement to NAND

can be done by simple circuit-manipulation techniques that change AND-OR diagrams to

NAND diagrams.

To obtain a multilevel NAND diagram from a Boolean expression, proceed as follows:

1. From the given Boolean expression, draw the logic diagram with AND, OR, and inverter

gates. Assume that both the normal and complement inputs are available.

2. Convert all AND gates to NAND gates with AND-invert graphic symbols.

3. Convert all OR gates to NAND gates with invert-OR graphic symbols.

4. Check all small circles in the diagram. For every small circle that is not compensated by

another small circle along the same line, insert an inverter (one-input NAND gate) or

complement the input variable.

E.g.

Multilevel Boolean expression: 𝐹 = (𝐶𝐷 + 𝐸)(𝐴 + 𝐵′)

→ NAND diagram using two graphic symbols:

→ NAND diagram using one graphic symbol:

 https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

13 Digital Logic BSc.CSIT

Multi-level NOR Circuit

The NOR function is the dual of the NAND function. For this reason, all procedures and rules

for NOR logic form a dual of the corresponding procedures and rules developed for NAND

logic.

Boolean function implementation using NOR gate:

1. Draw the AND-OR logic diagram from the given algebraic expression. Assume that both

the normal and complement inputs are available.

2. Convert all OR gates to NOR gates with OR-invert graphic symbols.

3. Convert all AND gates to NOR gates with invert-AND graphic symbols.

4. Any small circle that is not compensated by another small circle along the same line

needs an inverter or the complementation of the input variable.

E.g.

𝐹 = (𝐴𝐵 + 𝐸)(𝐶 + 𝐷)

Fig: Implementing 𝑭 = (𝑨𝑩 + 𝑬)(𝑪 + 𝑫) with NOR gates

Exclusive-OR (XOR)

The exclusive-OR (XOR) denoted by the symbol ⨁ is a logical operation that performs the

following Boolean operation:

𝑥⨁𝑦 = 𝑥𝑦′ + 𝑥′𝑦

It is equal to 1 if only 𝑥 is equal to 1 or if only 𝑦 is equal to 1 but not when both are equal to

1.

(a) (b)

(c)

 https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

14 Digital Logic BSc.CSIT

Realization of Ex-OR using basic gates and universal gates:

Parity Generator and Checker

Parity Generator:

A parity generator is a combinational logic circuit that generates the parity bit in the

transmitter.

- A parity bit is used for the purpose of detecting errors during transmission of binary

information. It is an extra bit included with a binary message to make the number of 1’s

either odd or even.

- Types of parity: Even parity & Odd parity.

- In Even parity, added parity bit will make the total number of 1’s an even amount.

- In Odd parity, added parity bit will make the total number of 1’s an odd amount.

3-bit even parity generator truth table:

Solving the truth table for all the

cases where 𝑃 is 1 using SOP

method:

 https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

15 Digital Logic BSc.CSIT

3-bit even parity generator circuit:

Parity checker:

A circuit that checks the parity in the receiver is called parity checker. The parity checker

circuit checks for possible errors in the transmission.

- Since the information transmitted with even parity, the received must have an even

number of 1’s. If it has odd number of 1’s, it indicates that there is an error occurred

during transmission.

3-bit even parity checker truth table;

The output of the parity checker is denoted by 𝑃𝐸𝐶 (Parity Error Checker). If there is error,

that is, if it has odd number of 1’s, it will indicate 1. If no then 𝑃𝐸𝐶 will indicate 0.

 https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

16 Digital Logic BSc.CSIT

3-bit even parity checker circuit:

Q. Design a combinational circuit that multiplies 2-bit numbers, 𝒂𝟏𝒂𝟎 and 𝒃𝟏𝒃𝟎 to produce a

4-bit product, 𝒄𝟑𝒄𝟐𝒄𝟏𝒄𝟎. Use AND gates and half-adders.

Soln:

Here’s how multiplication would take place:

In the above calculation 𝑎1𝑎0 is the multiplicand and 𝑏1𝑏0 is the multiplier. The first product

obtained from multiplying 𝑏0 with the multiplicand is called as partial product 1. And the second

product obtained from multiplying 𝑏1 with the multiplicand is known as the partial product 2.

 Based on the above equation, we can see that we need four AND gates and two half

adders. The AND gate will performs the multiplication, and the half adders will add the partial

product terms. Hence the circuit obtained is as follows:

(Here truth

table’s 𝑃 = 𝐷)

 https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

17 Digital Logic BSc.CSIT

Implementation of half subtractor using universal gate:

Using NAND gate only:

Using NOR gate only:

 https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

18 Digital Logic BSc.CSIT

Reference:

M. Morris Mano, “Digital Logic & Computer Design”

